«» UK Patent Application «GB .2 357 873 . A

{43) Date of A Publication 04.07.2001

{21) Application No 0105382.6 {51) INTCL?

GOSF 12/08
{22) Date of Filing 15.07.1999
{52) UK CL (Edition S}

Date Lodged 05.03.2001 : G4A AMC
{30) Priority Data (56} Documents Cited
{31) 09122349 (32) 24.07.1998 (33) US GB 2210480 A EP 0817081 A EP 0210384 A

WO097/22933 A US 5778432 A US 5524233 A

(62) Divided from Application No 9916637.3 under Section
15(4) of the Patents Act 1977 (58) Field of Search

UK CL (Edition S) G4A AMC

INT CL” GO6F 12/08

(71) Applicantis) . Online: WP1, EPODOC, PAJ, INSPEC, COMPUTER
intel Corporation

(Incorporated in USA - Delaware)

2200 Mission College Boulevard, Santa Clara, {72} cont

California 95052, United States of America Viadimir Pentkovski
Hsien-Cheng E Hsieh

{72) Inventor(s)

Lance Hacking {74} Agent andfor Address for Service

Shreekant S Thakkar Langner Parry

Thomas R Huff High Holborn House, 52-54 High Holborn, LONDON,
WC1V 6RR, United Kingdom .

{54) Abstract Title
Invalidating and flushing a predetermined area of cache memory

(57) A computer system comprises a cache memory with a plurality of cache lines, a storage area to store a
data operand, and an execution unit to operate on data elements in the data operand to invaiidate a
predetermined portion, such as a page in cache memory, of the cache lines in response to receiving a single
instruction. The data operand may be a register location {312) containing a portion of a starting address of the
cache line in which data is to be invalidated. This portion may include a plurality of most significant bits of the
starting address, which is then shifted by a predetermined number of bits by the execution unit to obtain the
starting address. The system may set an invalid bit corresponding to the predetermined area of the cache
memory. The system may also be used to copy, i.e. flush, a predetermined area of cache memory to a storage
area in response to receiving a single instruction. The flushed portion may then be invalidated.

Y e

310 (312

RECISTER LOCATION WITH
l bl C°°€-] STARTING ADDRESS l

J L REGISTER
{ LOCATION f 200

_____________ -
e !)
——— i - —] Cache Directory Coche Memory 1
210 220
ot it b1 | | (o)
X most significant bits S:y“: RiGHT : :
of starting oddress :igr;ili:ont bits 1 N 1
of storting .
oddress : . : M
1 —]
1| X oits ¥ bits 1 W
i X bits Y bits . h m
.
1 . 1
1 1 q
| !
i !
| | 0
1 ! |
FIG. 3 W

1/6

100
115 /
PROCESSOR 105 110
DECODE UNIT 140 STORAGE DEVICE
136 137
FETCHING UNIT 150 - { {
7y DATA SOFTWARE
|
b
INSTRUCTION SET 463 f120
CACHE CONTROL «—>
INSTRUCTION(S) KEYBOARD
160 {125
l— DISPLAY
fwo
141]
INTBESQJAL /(e—> NETWORK
REGISTER
143 FILE 131 N
TV BROADCAST -
]
(1ee (142 ™ SIGNAL RECEIVER [+ BROADCAST
’ ZXECUTION 132
CALCOHE] UNIT '’ ANALOG
145 g—> FAX MODEM jat—p SIGNALS
,f r133
L1
. VIDEO
CACHE g—» DIGITIZING UNIT }t— SIGNALS
. CACHE/ i a— SOUND UNIT
cAcug [CONTROLLER [e*
(135
GRAPHICS UNIT]

FIG. |

2/6

/160

OP CGCDE

L e

OFERAND
212

FIG. 2

3/6

- - - - - - -7 1
I _
I _
_ _
_ _
| I
_ . _
| * |
_ i SHAASKI X
| —H |~~~ il
_ . [
_ N |
I ¢ I
| _
| |
" 0¢e 0Le “
Aiowap ayoo) Kioyauag ayoo)
_ 3JHOVO _

SS34ppo
bunuoys jo
syq jubayiubis
1s03] A 4q
IHOIY L4IHS

ssasppo Buiuoys o
syq juodyiubis ysow X

NOILYOOT u

Y431S193

SSIAYAAY INILYVIS .
HLIM NOILYD07 ¥31S193y 3000 d0

210

091

o_nv

4/6

/162

PGINVD EAX

l/l‘ C EAX REGISTER

0008011

SHIFT RIGHT by #
of least
significant bits

f———= (0001011 ____
N prtetre)

e asaad
X bits Y bits

A e e —— - - — ——

FIG. 4A

/154

14
PGFLUSH £BX

U (EBX REGISTER

00101111

————— 00101111

———— FLUSH
—_— e T T T T T T T T TO
X bits Y bits pF+—m——————— STORAGE
[T ”"_"Z"T7”T"7 | DevICE
110

FIG. 4B

5/6

/500

510
L~

Examine operand to determine the location of value representing
most significant bits of starting address of operation

+ /_/512

Obtain value representing most significant
bits of starting oddress

+ ’_/514

Shift retrieved value by a predetermined
number of bits

+ 516

Determine coche segment
affected by operation

‘ 518

Invalidate data in the cache segment
beginning ot the starting address

FIG. 5A

6/6

'/520

522

g

’

Examine operand to determine the location of value
representing most significant bits of storting address

+ /_/524

Obtain value representing most significant
bits of starting address

‘ 526

Shift retrieved value by o predetermined
number of bits

‘ 528

Determine cache segment
aoffected by operation

i ‘ 530

Flush contents of coche segment
to storage device

534
L~

532

Invalidate data
FLUSH & in the cache

Is
instruction

FLUSH or ¢ INVALIDATE segment
FLUSH & INVALIDATE beginning at
instruction the starting
address

FIG. 58

2357873

A METHOD AND APPARATUS FOR PERFORMING
CACHE SEGMENT TI'LUSH OPERATIONS

BACKGRQUND OF THE INVENTION

1: ield th vention

The present invention relates in general to the field of computer systems, and

in particular, to an apparatus and method for providing instructions which facilitate

5 flushing of a portion of a cache memory within a cache system.

2. Dgsgjggjgn of the Related Art

The use of a cache memory with a computer system facilitates the reduction

of memory access time. The fundamental idea of cache organization is that by

10 keeping the most frequently accessed instructions and data in the fast cache
memory, the average memory access time will approach the access time of the
cache. To achieve the optimal tradeoffs between cache size and performance,v
typical computer systems implement a cache hierarchy, that is, different levels'of
cache memory. The different levels of cache correspond to different distances from

15 the computer system core. The closer the cache is to the corﬁputer system, the faster
the data access. However, the closer the cache is to the computer system, the more

costly it is to implement. As a result, the closer the cache level, the faster and

smaller the cache.

A cache unit is typically located between the computer system and main
20 memory; it typically includes a cache controller and a cache memory such as a static
random access memory (SRAM). The cache unit can be included on the same chip
as the computer system or can exist as a separate component. Alternatively, the
cache controller may be included on the computer system chip and the cache

memory is formed by external SRAM chips.

-1-

10

20

The performance of cache memory is frequently measured in terms of its hit
ratio. When the computer system refers to memory and finds the data in its cache,
it is said to produce a hit. If the data is not found in cache, then it is in main
memory and is counted as a miss. If a miss occurs, then an allocation is made at the
entry indexed by the address of the access. The access can be for loading data to the
computer system or storing data from the computer system to memory. The cached
information is retained by the cache memory until it is no longer needed, made

invalid or replaced by other data, in which instances the cache entry is de-allocated.

If other computer systems or system components have access to the main
memory, as is the case, for example, with a DMA controller, and the main memory
can be overwritten, the cache controller must inform the applicable cache that the
data stored within the cache is invalid if the data in the main memory changes.
Such an operation is known as cache invalidation. If the cache controller
implements a write-back strategy and, with a cache hit, only writes data from the
computer system to its cache, the cache content must be transferred to the main
memory under specific conditions. This applies, for example, when the DMA chip
transfers data from the main memory to a peripheral unit, but the current values

are only stored in an SRAM cache. This type of operation is known as a cache flush.

Currently, such invalidating and/or flushing operations are performed
automatically by hardware, for an associated cache line. In certain situations,
software have been developed to invalidate and/or flush the cache memory.
Currently, such software techniques involve the use of an instruction which
operates on the entire cache memory corresponding to the computer system from
which the instruction originated. However, such invalidation and/or flushing

operations require a large amount of time to complete, and provides no granularity

or control for the user to invalidate and/or flush specific data or portions of data
from the cache, while retaining the other data within the cache memory intact. -
When a flushing operation operates only on the entire cache memory, it results in
inflexibility and impacts system performance. In addition, where a cache

invalidation operation operates only on the entire cache, data corruption may

result.

Our co-pending application GB-A-2343029 concerns invalidating
and/or flushing a predetermined portion of cache memory and reference
is made thereto.

10

BRIEF SUMMARY OF THE INVENION

According to a first aspect of this invention there
is provided a computer system as claimed in claim 1
herein.

According to a second aspect of this invention there
is provided a processor as claimed in claim 7 herein.

According to a third aspect of this invention there
is provided a computer-implemented method as clamed in
claim 13 herein.

According to a fourth aspect of this invention there
is provided a computer-readable apparatus as clamed in
claim 19 heresin.

According to a fifth aspect of this invention there
is provided a computer program according to claim 21

herein.

—4-

10

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is illustrated by way of example, and not limitation, in the

figures. Like reference indicate similar elements.

Figure 1 illustrates an exemplary computer system in accordance with one

embodiment of the invention.

Figure 2 illustrates one embodiment of the format of a cache control

instruction 160 provided according to one embodiment of the invention.

Figure 3 illustrates the general operation of the cache control technique

according to one embodiment of the invention.

Figure 44 illustrates one embodiment of the operation of the cache segment

invalidate instruction 162.

Figure 4B illustrates one embodiment of the operation of the cache segment

flush instruction 164.

Figure 5A is a flowchart illustrating one embodiment of the cache segment

invalidate process of the present invention.

Figure 5B is a flowchart illustrating one embodiment of the cache segment

flush process of the present invention.

10

20

DETAILED DESCRIPTION OF THE INV'ENTION

In the following description, numerous specific details are set forth to provide
a thorough understanding of the invention. However, it is understood that the
invention may be practiced without these specific details. In other instances, well-
known circuits, structures and techniques have not been shown in detail in order

not to obscure the invention.

Figure 1 illustrates one embodiment of a computer system 100 which
implements the principles of the present invention. Computer system 100
comprises a computer system 105, a storage device 110, and a bus 115. The computer
system 105 is coupled to the storage device 110 by the bus 115. The storage device 110
represents one or more mechanisms for storing data. For example, the storage
device 110 may include read only memory (ROM), random access memory (RAM),
magnetic disk storage mediums, optical storage mediums, flash memory devices
and/or other machine readable mediums. In addition, a number of user
input/output devices, s.uch as a keyboard 120 and a display 125, are also coupled to
the bus 115. The computer system 105 represents a central processing unit of any
type of architecture, such as CISC, RISC, VLIW, or hybrid architecture. In addition,
the computer system 105 could be implemented on one or more chips. The storage
device 110 represents one or more mechanisms for storing data. For example, the
storage device 110 may include read only memory (ROM), random access memory
(RAM), magnetic disk storage mediums, optical storage mediums, flash memory
devices, and/or other machine-readable mediums. The bus 115 represents one or
more buses (e.g., AGP, PCI, ISA, X-Bus, VESA, etc.) and bridges (also termed as bus

controllers). While this embodiment is described in relation to a single computer

10

20

25

system computer system, the invention could be implemented in a multi-computer

system computer system.

In addition to other devices, one or more c;f a netwox;k 130, a TV bx;oadcast
signal receiver 131, a fax/modem 132, a digitizing unit 133, a sound unit 134, and a
graphics unit 135 may optionally be coupled to bus 115. The network 130 and fax
modem 132 represent one or more network connections for transmitting data over a
machine readable media (e.g., carrier waves). The digitizing unit 133 represents one
or more devices for digitizing images (i.e., a scanner, camera, etc.). The sound unit
134 represents one or more devices for inputting and/or outputting sound (e.g.,
microphones, speakers, magnetic main memories, etc.). The graphics unit 135
represents one or more devices for generating 3-D images (e.g., graphics card). Figure
1 also illustrates that the storage device 110 has stored therein data 136 and software
137. Data 136 represents data stored in one or more of the formats described herein.
Software 137 represents the necessary code for performing any and/or all of the
techniques described with reference to Figures 2, and 4-6. Of course, the storage
device 110 preferably contains additional software {not shown), which is not

necessary to understanding the invention.

Figure 1 additionally illustrates that the computer system 105 includes decode
unit 140, a set of registers 141, and execution unit 142, and an internal bus 143 for
executing instructions. The computer system 105 further includes two internal
cache memories, a level 0 (L0) cache memory which is coupled to the execution unit
142, and a level 1 (L1) cache memory, which is coupled to the L0 cache. An external
cache memory, i.e., a level 2 (L2) cache memory 172, is coupled to bus 115 via a cache
controller 170. The actual placement of the various cache memories is a design

choice or may be dictated by the computer system architecture. Thus, it is

.7-

10

20

o

appreciated that the L1 cache could be placed external to the computer system 105. In
alternate embodiments, more or less levels of cache (other than L1 and L2) may be
implemented. It is appreciated that three levels of cache hierarchy are shown in
Figure 1, but there could be more or less cache levels. For example, the present
invention could be practiced where there is only one cache level (L0 only) or where
there are only two cache levels (L0 and L1), or where there are four or more cache

levels.

Of course, the computer system 105 contains additional circuitry, which is not
necessary to understanding the invention. The decode unit 140, registers 141 and
execution unit 142 are coupled together by internal bus 143. The decode unit 140 is
used for decoding instructions received by computer system 105 into control signals
and/or micro code entry points. In response to these control signals and /or micro
code entry points, the execution unit 142 performs the appropriate operations. The
decode unit 140 may be implemented using any number of different mechanisms
(e.g., a look-up table, a hardware implementation, a PLA, etc.). While the decoding
of the various instructions is represented herein by a series of if/then statements, it
is understood that the execution of an instruction does not require a serial
processing of these if/then statements. Rather, any mechanism for logically
performing this if/then processing is considered to be within the scope of the

implementation of the invention.

The decode unit 140 is shown including a fetching unit 150 which fetches
instructions, and an instruction set 165 for performing operations on’ data. In one

embodiment, the instruction set 165 includes a cache control instruction(s) 160 provided

in accordance with the present invention. In one embodiment, the cache control

instructions include: a cache segment invalidate instruction(s) 162, a cache segment

-8-

10

20

flush instruction(s) 164 and a cache segment flush and invalidate instruction(s)
provided in accordance with the present invention. An example of the cache
segment invalidate instruction(s) 162 includes a Page Invalidate (PGINVD)
instruction which operates on a user specified linear address and invalidates the 4k
Byte physical page corresponding to the linear address from all levels of the cache
hierarchy for all agents in the computer system that are connected to the computer
system. An example of the cache segment flush instruction 164 includes a Page
Flush (PGFLUSH) instruction 164 that flushes data in the 4 Kbyte physical page
corresponding o the linear address on which the operation is periormed. An
example of the cache segment flush and invalidate instruction includes a Page
Flush/[nvalida:e (PGFLUSHINV) instruction \ that first flushes data in the 4
Kboyte physical pag2 corresponding to the linear address on which the operation is
periormed, and then invalidates the 4 kilobyte physical page corresponding to the
linear address. [n alternative embodiments, the cache control instruction(s) may
operate on either a user specified linear or physical address and perform the
associated invalidate and/or flush operations in accordance with the principles of

the invention.

In addition to the cache segment invalidate instruction(s) 162, the cache
segment flush instruction(s) 164, and the cache -segment flush and invalidate
instruction(s) computer system 105 can include new instructions and/or
instructions similar to or the same as those found in existing general purpose
computer systems. For example, in one embodiment the computer system 105
supports an instruction set which is compatible with the Intel® Architecture
instruction set used by existing computer systems, such as the Pénﬁum®H computer
system. Alternative embodiments of the invention may contain more or less, as

well as different instructions and still utilize the teachings of the invention.

9.

10

20

The registers 141 represent a storage are on computer system 105 for storing
information, such as control/status information, scalar and/or packed integer data,
floating point data, etc. It is understood that orle aspect of the invention is the
described instruction set. According to this aspect of the invention, the storage area
used for storing the data is not critical. The term data processing system is used
herein to refer to any machine for processing data, including the computer

systems(s) described with reference to Figure 1.

Figure 2 illustrates one embodiment of the format of any one of the cache
segment invalidate instruction 162, the cache segment flush instructions 164, and
the cache segment flush and invalidate instruction provided in accordance with
the present invention. For discussion purposes, the instructions 162, 164 and
will be referred to as the cache control instruction 160. The cache control instruction
160 comprises an operational code (OP CODE) 210 which identifies the operation of
the cache control instruction 160 and an operand 212 which specifies the name of a
register or memory location which holds a starting address of the data object that the

instruction 160 will be operating on.

Figure 3 illustrates the general operation of the cache control instruction 160
according to one embodiment of the invention. In the practice of the invention, the
cache control instruction 160 provides the register (or memory) location which
holds a starting address of the data object that the instruction 160 will be operating
on. In one embodiment, the starting address includes X most significant bits, which
are stored in the register (or memory) location, and Y least significant bits. The
cache control process associated with the cache control instruction 160 then shifts
the X bits to the right by Y bit positions to obtain the complete starting address. The

cache control instruction 160 then Operates on the data corresponding to the starting

-10-

10

20

address, and data corresponding to the Z subsequent addresses, in cache memory. In
one embodiment, the cache control instruction 160 operates on one page of data
stored in cache, of which the beginning address is stored in a register (or memory)
location specified in the operand 212 of the cache control instruction. In alternate
embodiments, the cache control instruction 160 may operate on any predetermined
amount of data stored in cache, of which the beginning address is stored in a register

(or memory) location specified in the operand 212 of the cache control instruction.

In Figure 1, only L0, L1 and L2 levels are shown, but it is appreciated that
more or less levels can be readily implemented. The embodiment shown in Figures

4-6 describes the use of the invention with respect to one cache level.

Details of various embodiments of the cache control instruction 160 will now
be described. The cache segment invalidate instruction 162 will first be described. .
Figure 4A illustrates one embodiment of the cache segment invalidate instruction
162. Upon receiving the cache segment invalidate instruction 162, the computer
system 105 determines, from the operand 312 of the instruction 162, the register
location in which the most signification bits of the starting address of the data object
is stored. The computer system 105 then shifts the value in the operand 312, by the
number of least significant bits of the starting address. Once the complete starting
address is obtained, the computer system 105 sets the invalidate bit of the cache
memory 200 corresponding to the affected locations of the cache memory. In one
embodiment, one page of the cache memory 220 having a starting address
corresponding to that stored in the operand 312 will be invalidated. ‘In alternate
embodiments, data in any predetermined portions of the cache memory 220 having
a starting address corresponding to that stored in the operand 312 will be invalidated

using the present technique.

-11-

10

20

25

The cache segment flush instruction 164 will next be described. Figure 4B
illustrates one embodiment of the cache segment flush instruction 164. Upon
recéivihg the cache segment' flush instruction 164, the computer system 105
determines, from the operand 312 of the instruction 164, the register location in
which the most signification bits of the starting address of the data object is stored.
The computer system 105 then shifts the value in the operand 312, by the number of
least significant bits of the starting address. Once the complete starting address is
obtained, the computer system flushes the locations of cache memory 220 affected by
execution of the instruction 164. In one embodiment, one page of the cache
memory 220 having a starting address corresponding to that stored in the operand
312 will be flushed. In alternate embodiments, data in any predetermined portions
of the cache memory 220 having a starting address corresponding to that stored in

the operand 312 will be flushed.

Upon receiving the cache segment flush instruction, the
computer system 105 determines, from the operand 312 of the instruction 164, the
register location in which the most signification bits of the starting address of the
data object is stored. The computer system 105 then shifts the value in the operand
312, by the number of least significant bits of the starting address. Once the complete
starting address is obtained, the computer system flushes the locations of cache
memory 220 affected by execution of the instruction 164. In one embodiment, one
page of the cache memory 220 having a starting address corresponding to that stored
in the operand 312 will be flushed. In alternate embodiments, any predetermined
portions of the cache memory 220 having a starting address~corre5ponding to that

stored in the operand 312 will be flushed. Next, the computer system 105

-12-

10

15

20

invalidates the affected areas of the cache memory 220 that have been flushed. In
one embodiment, this is performed by setting the invalidate bit of each affected

cache line.

Figure 5A is a flowchart illustrating one embodiment of the cache segment
invalidate process of the present invention. Beginning from a start state, the process
500 proceeds to process block 510, where it examines the operand 312 of the
instruction 62 received by the computer system 105 to determine the storage location
of the value representing the most significant bits of the starting address of the
corresponding operation. The process 500 then proceeds to process block 512, where
it retrieves the value representing the most significant bits of the starting address
from the storage location specified. The process 500 then advances to process block
514, where it shifts the retrieved value by a predetermined number of bits. In one
embodiment, the predetermined number represents the number of least significant
bits in the starting address. Next, the process 500 determines the cache segment
affected by the operation or the instruction 162, as shown in process block 516. In
one embodiment, the cache segment is a page. In one embodiment, a page contains
4k Bytes. In alternate embodiments, the cache segment may be any predetermined
portion of the cache memory. The process 500 then proceeds to process block 516,
where it invalidates the data in the corresponding cache segment beginning at the
starting address specified. In one embodiment, this is performed by setting the
invalid bit corresponding to each cache line in the cache segment. The process 500

then terminates.

Figure 5B is a flowchart illustrating one embodiment of the cache segment
flush process of the present invention. Beginning from a start state, the process 520

proceeds to process block 522, where it examines the operand 312 of the instruction

w

10

20

64 or 66 received by the computer system 105 to determine the Storage location of the
value representing the most significant bits of the starting address of the
corresponding operation. The process 520 then proceeds to process bloc.k 524, where
it retrieves the value representing the most significant bits of the starting address
from the storage location specified. The process 520 then advances to process block
526, where it shifts the retrieved value by a predetermined number of bits. In one
embodiment, the predetermined number represents the number of least significant
bits in the starting address. Next, the process 520 determines the cache segment
affected by the operation or the instruction 64 or 66, as shown in process block 528.

In one embodiment, the cache segment is a page. In alternate embodiments the
cache segment may be any predetermined portion of the cache. The process 520 then
proceeds to process block 530, where it flushes the contents of the cache segment to
the storage device specified. The process 520 then proceeds to decision block 530,
where it queries if the instruction received corresponding to the operation is a
FLUSH or a FLUSH and INVALIDATE instruction. If the instruction is a FLUSH,
the process 520 terminates. If the instruction is a FLUSH and INVALIDATE
instruction, the process 520 proceeds to process block 534, where it invalidates the
data in the corresponding cache segment beginning at the starting address specified.
In one embodiment, this is performed by setting the invalid bit corresponding to

each cache line in the cache segment. The process 520 then terminates.

The use of the present invention thus enhances system performance by
providing an invalidate instruction and/or a flush instruction for invalidating
and/or flushing data in any predetermined portion of the cache memory. For cases
where consistency between the cache and main memory are maintained by saftware,
system performance is enhanced, since flushing only the affected portions of cache is

more efficient and flexible than flushing the entire cache. In addition, system

-14-

10

performance is enhanced by having a flushing and/or invalidate operation that has
a granularity that is larger than a cache line size, since the user can flush and/or
invalidate a memory region using a single instruction instead of having to alter the

code, as the computer system changes the size of a cache line.

While a preferred embodiment has been described, it is to understood that the
invention is not limited to such use. In addition, while the invention has been
described in terms of several embodiments, those skilled in the art will recognize
that the invention is not limited to the embodiments described. The method and
apparatus of the invention can be practiced with modification and alteration within
‘the scope of the appended claims. The description is thus to be regarded as

illustrative instead of limiting on the invention.

-15-

10

15

20

25

30

16

CLAIMS:
1. A computer system comprising:

a first storage area to store data;

a cache memory having a plurality of cache lines each of
which stores data;

a second storage area to store a data operand; and

an execution unit coupled to said first storage area,
said second storage area, and said cache memory, said
execution unit to operate on data elements in said data
operand to copy data from a predetermined portion of the
plurality of cache lines in the cache memory to the first
storage area, in response to receiving a single instruction.
2. The computer system of claim 1, wherein the data operand
is a register location.
3. The computer system of claim 2, wherein the register
location contains a plurality of most significant bits of a
starting address of the cache line in which data is to be
copied.
4. The computer system of claim 3, wherein execution unit
shifts the data elements by a predetermined number of bit
positions to obtain the starting address of the cache line in
which data is to be copied.
5. The computer system of claim 1, wherein the predetermined
portion of the plurality of cache lines is a page in the cache
memory.
6. The computer system of claim 1, wherein the execution
unit further invalidates data in the predetermined portion of
the plurality of cache lines in response to receiving the
single instruction, upon copying the data to the first storage

area.

5

10

15

20

25

30

-17-

7. A processor comprising:
a decoder configured to decode instructions, and
a circuit coupled to said decoder, said circuit in response to
a single decoded instruction being configured to: ‘
obtain a starting address of a predetermined area of a
cache memory on which the instruction will be performed;
copy data in the predetermined area of cache memory;
store the copied data in a storage area separate from the
cache memory.
8. The processor of claim 7, wherein a portion of the
starting address is located in a register specified in the
decoded instruction.
9. The processor of claim 7, wherein the portion of the
starting address includes a plurality of most significant bits
of the starting address.
10. The processor of claim 9, wherein the circuit shifts the
data elements by a predetermined number of bit positions to
obtain the starting address of the cache line in which data is
to be copied.
11. The processor of claim 9, wherein the predetermined
portion of the plurality of cache lines is a page in the cache
memory.
12. The processor of claim 9, wherein said circuit further
invalidates the data in the predetermined portion of the
plurality of cache lines in response to receiving the single
instruction, upon copying the data to the storage area.
13. A computer-implemented method, comprising:
a) decoding a single instruction;

b) in response to said step of decoding the single

10

15

20

25

30

-18-

instruction, obtaining a starting address of a predetermined
area of a cache memory on which the single instruction will be
performed; and

c) completing execution of said single instruction by
copying data in a predetermined area of cache memory and
storing the copied data in a storage area separate from the
cache memory.

14. The method of claim 13, wherein c) comprises setting an
invalid bit corresponding to the predetermined area of cache
memory.

15. The method of claim 13, wherein b) comprises:

b.1) obtaining a portion of the starting address from a’
storage location specified in the decoded instruction;

b.2) shifting the portion of the starting address by a
predetermined number of bit positions to obtain the starting
address of the cache line in which data is to be invalidated.
16. The method of claim 15, wherein in b.l) the portion of
the starting address contains a plurality of most significant
bits of the starting address, and wherein in b.2) the
predetermined number of bit positions represent the number of
least significant bits of the starting address.

17. The method of claim 13, wherein the predetermined portion
of the plurality of cache lines is a page in the cache memory.
18. The method of claim 13, further comprising:

d) invalidating the data in the predetermined portion
of the plurality of cache lines in response to receiving the
single instruction, upon copying the data to the storage area.
19. A computer-readable apparatus comprising:

a computer-readable medium that stores an instruction

10

15

-19-

which when executed by a processor causes said processor to:

obtain a starting address of a predetermined area of a
cache memory on which the instruction will be performed;

copy data from the predetermined area of cache memory;
and

store the copied data in a storage area separate from the
cache memory.
20. The apparatus of claim 19, wherein the instruction
further causes the processor to:

invalidate the data in the predetermined portion of the
plurality of cache lines in response to receiving the
instruction, upon copying the data to the storage area.
21. A computer program comprising computer program code means
adapted to perform all the steps of claim 13 when that program

is run on a computer.

@
g“a g

?!}r‘ Om(:e @5 INVESTOR IN PEOPLE
O&T . T?:ﬁ
Application No: GB 0105382.6 10 Examiner: Ben Micklewright
Claims searched: 1-21 Date of search: 25 April 2001
Patents Act 1977
Search Report under Section 17
Databases searched:
UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK Cl1 (Ed.S): G4A (AMC)
Int Cl (Ed.7): GOG6F (12/08)
Other: Online: WPI, EPODOC, PAJ, INSPEC, COMPUTER
Documents considered to be relevant:
Category| Identity of document and relevant passage Relevant
to claims
X GB 2210480 A (SUN) See whole document, e.g. pages 1,2 and 121
pages 10-17
X EP 0817081 A2 (SUN) See e.g. column 6 lines 3-16 and column 11
. 1-21
lines 40-48
X | EP 0210384 Al (HEWLETT-PACKARD) See e.g. pages 5-9 1-21
X | WO97/22933 A1 (AMD) See e.g. pages 3 and 7 1-21
X US 5778432 (RUBIN) See e.g. column 2 lines 26-37 1-21
X US 5524233 (MILBURN) See e.g. column 10 lines 10-15 1-21
X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art
Y Document indicating lack of inventive step if combined P Documentpublished on or afier the declared priority date butbefore the

with one or more other documents of same category. filing date of this invention.

E Patent document published on or after, but with priority date earlier

& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

	2002-10-09 Foreign Reference

